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Abstract

A monomial orthogonal polynomial of several variables is of the fefm Q. (x) for a multiindex
o e Nd*1 and it has the least? norm among all polynomials of the forn¥ — P(x), where P
and Q,, are polynomials of degree less than the total degre€ dfVe study monomial orthogonal
polynomials with respect to the weight functicﬁrp,.dill|xi|2"i on the unit spherg? as well as for
the related weight functions on the unit ball and on the standard simplex. The results include explicit
formula,L2 norm, and explicit expansion in terms of known orthonormal basis. Furthermore, in the
case ofk; = - -- =K1, an explicit basis for symmetric orthogonal polynomials is also given.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to study monomial orthogonal polynomials of several vari-
ables. LetW be a weight function defined on a g@tin R?. Let« € Nd. The monomial
orthogonal polynomials are of the forRy, (x) = x* — Q. (x) with Q, being a polynomial
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of degree less tham = |o| := a1 + - -- + o4, and it is orthogonal to all polynomials of
degree less thamin L2(W, Q); in other words, they are orthogonal projections:ébnto
the subspace of orthogonal polynomials of degreén the case of one variable, such a
polynomial is just an orthogonal polynomial normalized with a unit leading coefficient and
its explicit formula is known for many classical weight functions. For several variables,
there are many linearly independent orthogonal polynomials of the same degree and the
explicit formula of R, is not immediately known.

LetHﬁ denote the space of polynomials of degree at most variables. The polynomial
R, can be considered as the error of the best approximatichtof polynomials fronﬂ‘,ffl,
n = ||, in L2(W, Q). Indeed, a standard Hilbert space argument shows that

[Rall2 =[x — Qull2 = ir}‘)f{llxa — Pll2, P € IT§_y,n = |al},

where|| - ||2 is the L2(W, ) norm. In other wordsR,, has the least.?2 norm among all
polynomials of the forme* — P, whereP e IT¢_,.

Let dw be the surface measure on the unit spi#re= {x : |x|| = 1}, where||x|| is the
Euclidean norm ok € R?*1. In the present paper, we consider the monomial orthogonal
polynomials inL?(h2 dw, S¢), where

d+1
he(x) = ]‘[ i, k>0, xeRITL (1.1)
i=1

The homogeneous orthogonal polynomials with respect to this weight function arefcalled
harmonics; they are the simplest examples ofitfirmonics associated with the reflection
groups (see, for exampl§4,5,7] and references therein). The weight function in (1.1) is
invariant under the grouﬂ‘z”l. Let 7?,‘,”1 denote the space of homogeneous polynomials

of degreen in d + 1 variables. The monomial homogeneous polynomials are of the form
Ry(x) = x* — || x[I?Qqx(x), whereQ, € P53 andn = |a|. In this case, we defin&,
through a generating function and derive their various properties. Using a correspondence
between théi-harmonics and orthogonal polynomials on the unit Bll= {x : ||x| <1}

of R?, this also gives the monomial orthogonal polynomials with respect to the weight
function

d
wWE@) =[] i@ jx? =12 xe B! k>0 (1.2)
i=1

Inthe case:; = 0for1<i <d andk,11 = 1, the weight functiow ? is the classical weight
function(1— | x||2)*~1/2for which the monomial polynomials are known already to Hermite
(in special cases); s48, vol. 2, Chapter 12]. There is also a correspondence between the
h-harmonics and orthogonal polynomials on the simféx= {x : x; >0,1 — |x| >0}

of R4, where|x| = x1 + - - - + x4, which allows us to derive properties of the monomial
orthogonal polynomials with respect to the weight function

d
w!l(x) = ]‘[ Y21 = xprer2 x e, K >0. (1.3)
i=1
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For these families of the weight functions, we will define the monomial orthogonal poly-
nomials using generating functions, and give explicit formulae for these polynomials in the
next section.

If i1 = - -+ = k441, thenthe weight functionisinvariant under the action of the symmetric
group. We can consider the subspacé-tfarmonics invariant under the symmetric group.
Recently, i6], Dunkl gave an explicit basis in terms of monomial symmetric polynomials.
Another explicit basis can be derived from the explicit formula&ef which we give in
Section 3.

Various explicit bases of orthogonal polynomials for the above weight functions have
appeared ifi7,11,16], some can be traced back to Rgf$8] in special cases. Our emphasis
is on the monomial bases and explicit computation of#Reorm. TheL? norms of the
monomial orthogonal polynomials give the error of the best approximation to monomials
by polynomials of lower degrees. We compute the norms in Section 4. They are expressed as
integrals of the product of the Jacobi or Gegenbauer polynomials. We mention two special
cases of our general results, in whiBk(z) denotes the Legendre polynomial of degiee

Theorem 1.1. For o € Nd, letn = |o|. Then

1 5 do 14 et
min —— x* — Q)| dx = ———— f Py, ()" dt,
Qeﬂgfl vol Bd /Bd 2n(d/2)n 0 E_ *

wherevol BY = n¢/2/I'(d /2 + 1) is the volume oB?, and

1 2 doat? [t +d-1
min = [ % - 0x)2dx = — / Py (2r — 11 ar,
gemd_, d! Jra (d)2n Jo 5 :

As the best approximation t¢*, the monomial orthogonal polynomials with respect to
the unit weight function (Lebesgue measure)Bhhave been studied recently[]. Let
us also mentioffl], in which certain invariant polynomials with the ledst norm ons¢
are studied.

For h-harmonics, the sdtR, : |a| = n} contains an orthogonal basis/oharmonics of
degreen but the set itself is not a basis. In general, two monomial orthogonal polynomials
of the same degree are not orthogonal to each other. On the other hand, for each of the three
families of the weight functions, an orthonormal basis can be given in terms of the Jacobi
polynomials or the Gegenbauer polynomials. We will derive an explicit expansiBg iof
terms of this orthonormal basis in Section 5, the coefficients of the expansion are given in
terms of Hahn polynomials of several variables.

Finally in Section 6, we discuss another property of the polynomials defined by the
generating function. It leads to an expansion of monomials in terms of monomial orthogonal
polynomials.

2. Monomial orthogonal polynomials

Throughout this paper we use the standard multiindex notationz FoN{ we write
lo] = o1 + -+ + o Foro, f € Ng we also writea! = og!---0,! and (0)p =
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(aa)p, -+ (@m)p, » Where(a), = a(@ +1)...(a +n — 1) is the Pochhammer symbol.
Furthermore, forxr € N anda, b € R, we writeao + bl = (aoy + b, ..., a0, + b)
and denotd := (1,1,...,1). Fora, f € Ng, the inequalityx < f means that; < f8; for
1<i<m.

2.1. Monomiali-harmonics

First, we recall relevant part of the theory/oharmonics; se@,5,7] and the reference
therein. We shall restrict ourself to the casé:igfdefined in (1.1); see al4&6].

Let ’Hﬁ*l(hi) denote the space of homogeneous orthogonal polynomials of degree
with respect toi2 dw on $¢. If all k; = 0, thenH4+1(h2) is just the space of the ordinary
harmonics. It is known that

d d-2
dim H4+1(h2) = dim P+ — dim PIL = (”Z > - (” i > .

The elements ot *+1(h2) are calledz-harmonics since they can be defined through an
analog of Laplacian operator. The essential ingredient is Dunkl’s operators, which are a
family of first-order differential-difference operators defined by

Dif(r) = 0 fx) 1 LTS O T X)) g g (2

Xi

These operators commute; that13,D; = D;D;. The h-Laplacian is defined byl, =

DZ+ ...+ D3 ,.Thend,P =0, P e P¢*Lifand only if P € HIT1(h2). The structure

of the k-harmonics and that of ordinary harmonic polynomials are parallel. Some of the
properties ofi-harmonics can be expressed using ititertwining operator,V,., which

is a linear operator that acts between ordinary harmonicg:gmatmonics. It is uniquely
determined by the properties

DiVi = Vidi, Vil=1, VPiHlcpitl
For the weight functiork,. in (1.1), Vi is an integral operator defined by

Vief(x) = / fat, ..., xar1ta+1)
[_1,1]d+1

d+1
<[] e @+ )@=y, (2.2)
i=1

wherec, = I'(u+1/2)/(/=I’(w). If any one ofk; = 0, the formula holds under the limit

1
o ¥ / fOA=2Y =1/ D+ f(-1)/2 (2.3)
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The Poisson kernel, or reproducing kernE[,hﬁ; x, y) of the h-harmonics is defined by
the property

Fo = /S FOIPOZ ) FOIR) o),

, Dl + 5 »

Ch = Sqd+L 1 (2.4)
for f e H,{(h%) and||y|| <1, wherec; is the normalization constant of the weight function
hZ on the unit spher&?, ¢) [ h2dw = 1 anddw is the surface measure. Using the
intertwining operator, the Poisson kernel of théarmonics can be written as

(1= 2(y, ) + llylI?r+t 2

for |yl < 1= |x]|.Ifall k; = 0, thenV, = id is the identity operator anﬂ'(h%; X, )
is the classical Poisson kernel, which is related to the Poisson kernel of the Gegenbauer
polynomials

1— Iyl d—1

1—r2 >

(L—2rt + 7221 X(:J 7 Cn
n=

The above function can be viewed as a generating function for the Gegenbauer polynomials
C,’}(t). The usual generating function 6f;, however, takes the following forntl — 2r¢ +

r3)~4 = Yo C,f(t)r". Our definition of the monomial orthogonal polynomials is the
analog of the generating function 6f, in several variables.

Definition 2.1. Letp = |x| + 95 > 0. Define polynomial, (x) by

1 ~
v, (x) = b*Ry(x), x e R
‘ [(1 —2(b,) + ||b||2||x||2>P] NZ ’
0

Let Fp be the Lauricella hypergeometric series of typewhich generalizes the hyper-
geometric functiorn F1 to several variables (cf10]),
(“)y(ﬁ)y y

x’, a,BeNg+l, ceR, max |x;| < 1,
(C)|y|’y‘ 1<i<d+1

Fp(o Bicix) =Y

v

where the summation is taken ovee Ng“. We derive properties at, in the following.

Proposition 2.2. The polynomialsﬁ“ satisfy the following properties:
(1) Ry € P4t and

- o] _ (=
R = 22O 5 DO DBy iy (-2,
' ¥

(—lal —p+ D!

where the series terminates as the summation is overalth thaty <o;
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~ ~ 2lol
(2) Ry € HIHL(h2) and Ry (x) = % Vil [Sx()1(x) for ||x|| = 1, where
o —o+1 1 1
Sx(y)—y“FB< > ;—Ial—p+1;—2,...,2—).
Y1 Yd+1
Furthermore,
Y PRy () = —— i (h%:b,x), |xll =1,
|ot|=n

where P, (h2; y, x) is the reproducing kernel g4+ (h2) in L2(h2, $471).

K’

Proof. Using the multinomial and binomial formula, we write
(1=2(a.y) + al®) ™" =1 —a12y1 — a1) — - — ag(2ya1 — aa+1) "
()
Z \ﬁl a’@y1 —aph ... 2ya11 - agr)len

(P)\m (=P, - (PayDran
Z Z : +1)y

2\ﬂ| 7y~ }a 4B

Changing summation indicgs + y; = o; and using the formulae

CVE Oy Cmt b (D Em
(1—p—my (m—k)! m!

(P)m—k =

as well as 2% (—m)y = (—m/2)((1 — m)/2), we can rewrite the formula as

L 2% (p) 2), +1)/2
(1—2<a,y>+IIaII2)7p_Z (p)‘ l Z - Oi/Iot)l ((po-(kl))(v‘)/y N

x “1_~ ol = p 1 L
5 5 )

Using the first equal sign of the expansion with the function
(L= 2(b, y) + IxIP1B1% 77 = @ = 2(|x[Ib, y/lx1) + lllx 15157

and applying/ with respectta gives the expression &, in (1). 1 |x]| = 1, thenthe second
equal sign gives the expressmnm in (2). We still need to show that, € ’H,d+1(h
Let ||x|| = 1. For]|y|| <1 the generating function of the Gegenbauer polynomials gives

(L—2(b, y) + IID) ™ = @ — 2bI(b/1IbIl, y) + 1bII?)

=" 11" CE (/1] ¥))-

n=0
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Consequently, applyinyj, on y in the above equation gives

> b Ry) = 161" Vil €L (b/ b1 - NG, x| = 1.

lot|=n

On the other hand, it is known that the reproducing ke®gh?; x, y) of HI+t1(h2) is
given by[7, p. 190]

+
Py(higs %, y) = % Iy 1" Vil CR /vl DI, Iyl <lixl =1,

o) thatZM:n b*R,(x) is a constant multiple oP, (h2; x, b). Consequently, for any,

K’

3 b*R,(x) is an element i{?+1(h2); therefore, S0 iR,. [

In the following let [x] denote the integer part of. We also us€g«/2] to denote
([22/2], ... [ota41/2]) for o e NgHL

Proposition 2.3. Letp = |k| + (d — 1)/2.Then

~ 2" () (1/2)y—p a+1
R = R s h =0 —
«(x) o K+ 1/, a(x), where f=a [ 2 ]
and
1 2 2
i) =578y (<t it o B,
1 d+1

Proof. By consideringn being even or odd, it is easy to verify that

(D)) (1753 -

K
(K+ %)[nH—l] (_[mTH] +

NI

)i

1
c,C/ M A+ A -1H)tar =
-1

NIk +

)i

for k >0. Hence, using the explicit formula &f, the formula ofRy in (1) of Proposition
2.2becomes,

24y A/,
ol (et 1/

% Z (—0/2)y((—a+1)/2)y (—[(2+1)/2] — Kk +1/2), ”xnzmxa,zy'
(=lotl = p + D! (—le+1/21+1/2),

Ea(x) =

?
Using the fact that

(2.(527), - (= [57), (C[57]2),

I

the above expression ﬁfa can be written in terms of'z as stated. [J
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Note that theF'g function in the proposition is a finite series, sineer),, = 0if m > n.
In particular, this shows thak,(x) is the monomial orthogonal polynomial of the form
Ry(x) = x* — |x[?Qy(x), whereQ, € P4 _,.

Another generalization of the hypergeometric sesiEsto several variables is the Lau-
ricella function of typeA, defined by (cf[10])
Oy x’, o, fe Ng“, ceR,

Fate, o fix) =) Bl

where the summation is taken ovee Ng ™. If all components of are even, then we can
write R, usingFjy.

Proposition 2.4. Let f € N3 ™. Then

(k+1/2)p 2 1 x? x5+1
Rop(x) = (~ D) ——2 x| PP Fy (=B, 1B+ pi e+ 55 5, :
2 Gty PV EA (BRI Pt i

Proof. Foro = 2 the formula in terms of'z becomes

_ (=P (=P —K+1/2)y o0 2p-2
Ras) =2~ opr—pr oy I

7<p

wherey < fmeansg; < fiy, ..., 7441 < Bgp1; NOte that—p), = 0if y > B. Changing the

summation index by; — f; —y; and using the formul&:),,—,, = (—1)"(a),/(1—n—a);,

to rewrite the Pochhammer symbols, for example,

_ (=1)(k+1/2)p
(-f—x+1/2,’

we can rewrite the summation into the stated formul&jn O

_ (_1)|“/|[gy

(x+1/2p-, B='=Dp_y = B,
y

Let proj, : P4*1 > HI+1(h2) denote the projection operator of polynomialsagt!
ontoH4*+1(h2). It follows that R, is the orthogonal projection of the monomidl. Recall
thatD; is the Dunkl operator defined in (2.1). We defipé = D{* - - - DJ%*! for o € Ng .
Lete; = (0,...,0,1,0,...,0) denote the standard basisif .

Proposition 2.5. The polynomials,, satisfy the following properties:

(1) R.(x) = proj, x*, n = |af, and

(-1 _ d—-1
Ru() = e s (1)) p = Il + =5

(2) R, satisfies the relation
12 12D; Ry (x) = —2(1 + p) [ Roe; (X) — i Ry ()] .

(3) The se{R, : |o| = n, 0y+1 = 0, 1} is a basis ofHI 1 (h2).
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Proof. SinceR, € HI+1(h2) andR,(x) = x* — || x|2Q(x), whereQ € P12, it follows
that R,(x) = proj, x*. On the other hand, it is shown [&9] that the polynomials,,
defined by

2p+2n -2
Hy(x) = ||x[| T D*||x || =%,

satisfy the relatiorfl, (x) = (—1)"2"(p),proj,,, x*, from which the explicit formula in (1)
follows. The polynomiald4, satisfy the recursive relation

Hyye;(x) = —(2la] + 2p)x; Hy (x) + [1X[1°D; Hy (x),

which gives the relation in (2). Finally, it is proved[ib9] that{H, : |x| = n, «4+1 = 0, 1}
is a basis o4 *1(h2). O

Inthe case of = ne;, R, takes a simple form. Indeed, I@)E’l’“) (1) denote the generalized
Gegenbauer polynomials defined by

) 1
M (x) = c#/ CHaxt) L+ (A — 2" Lar.
These polynomials are orthogonal with respect to the weight funatjon(t) = 1|21 —

12)/=1/2 on [—1, 1] and they become Gegenbauer polynomials whea 0 (use (2.3));

that is,C,SA’O) ") = C,),‘(t). In terms of the Jacobi polynomia!sf“”’) (1), the generalized
Gegenbauer polynomials can be written as

A+ —1/2,1—
C 3y = (A +n), pi-t2u-1/2 5.2 _ qy

1 n
(n+3),
A (24 1) J=1/2, 141
Corl(x) = L pAT IR (92 ), (2.5)
(,Ll + ?)n+l
Recall that the Jacobi ponnomiBJ,(“'b) (1) can be written as aF7 function
@by o @+ D —n,n+a+b+1 1—t
PN = T 2F at1 ) (2.6)

Foro = ne;, the Fp formula of R, becomes a single sum singem) ; = 0if m < j, which
can be written in terms ofF1. For example, i = 2m + 1, then

m

R(2m+l)el (X) = Z

j=0

—m, —m — k1 —1/2_||x||?
:x§m+12F1( 1 / S .

(=m);j(—m — k1 —1/2); |2 22
(=2m—1—p+1);j! !

—2m—1-p+1 ;2

This can be written in terms of Jacobi polynomials (2.6), upon changing the summation
index by j — m — j, and further in the generalized Gegenbauer polynomials using (2.5).
The resultis
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Corollary 2.6. Letn € No. ThenR,,, (x) = proj, x' satisfies
R e PO,
Rue, (0) = x]" [k~ P70 ),

s 0)

wherek,(l)“'“) denote the leading coefficientﬁf, (1) given by
) A A
kéf,’“) _ ( +],-U)2n‘ and kéi—l:?l. _ (4 +iu)2n+1" 2.7)
(/“t + ?)n n. (‘u + §)n+ln'

In the case of ordinary harmonics, thatiés = 0, the polynomials,,, are givenin terms
of the Gegenbauer polynomials.

2.2. Monomial orthogonal polynomials on the unit ball

The h-spherical harmonics associated to (1.1) are closely related to orthogonal poly-
nomials associated to the weight functiow® in (1.2). In fact, if Y € H+1(h2) is an
h-harmonic associated with,(y) = [ |y that is even in itSd + 1)th variable,

Y(y', ya+1) = Y (', —ya+1), then the polynomiaP, defined by
Y(y) =r"P(x), y=rxxas1), 7=yl & xs11) € 5%, (2.8)

is an orthogonal polynomials with respectZ. Moreover, this defines an one-to-one
correspondence between the two sets of polynorfilalks

Working with polynomials o3¢, the monomials are* with « € N3, instead ofNg**.
Sincex?,; = 1— ||x|| for (x, xq41) € S¢, we only consideRr, in Definition 2.1 with
o= (a1, ..., %, 0). The correspondence (2.8) leads to the following definition:

Definition 2.7. Letp = |x| + %1. Define polynomialsk2 (x), o € Ng, by

1
C
§ /[1,1]4 (1 — 2(b1x1t1 + - - - + baxata) + |b]|2)P

=Y p"RE(x). xeB

d
oxeNg

d
[Ta+ma—dta
i=1

The polynomialsﬁf form a basis of the subspace of orthogonal polynomials of degree
n with respect tov 2. It is given by the explicit formula

Proposition 2.8. Letp = |x| 4 (d — 1)/2.For o € N& andx € R?,

2°p)a  (1/2)4p
ol (k+1/2), 4

RB(x) =

1
Rf(x), where f = o — [a—;— :|

and

., 1 1 1
Ry(x) =x"Fp |-, —a+f—r+i—lael—p+L—,.... 5 |.
2 x5 x5
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In particular, Rf(x) =x%— Qu(x), Oy € ng_l, is the monomial orthogonal polynomial
with respect tov 2 on B<.

Proof. Settingbs+1 = 0 and|x| = 1 in the generating function (2.1) shows that the
generating function ok? is the same as the one & 5,0) (). ConsequentlyR2 (x) =
R5,0)(x, x441) for (x, x411) € 87, SinceR,0)(x, x4+1) is even in itsd + 1 variable, the
correspondence (2.8) shows ttRff is orthogonal and its properties can be derived from
those ofR,. O

In particular, ifx; = 0fori =1,...,d andx,+1 = u so thatW,2 becomes the classical
weight function(1 — ||x[|?)“~1/2, then the limit relation (2.3) shows that the generating
function becomes simply

(1 —2(b, x) + D] D2= 3" PR} (x), xeR”

o€ Ng

This is the generating function of one family of Appell’s biorthogonal polynomials and
R3(x) is usually denoted by, (x) in the literature (see, for examplg, vol. Il, Chapter
12] or [7, Chapter 2]).
The definition ofRZ comes from that ok-harmonicsR ., by the correspondence. If
we considemRy with f = («, #44+1) and assume that; 1 is an even integer, theRy leads
to the orthogonal projection of the polynomiel(1 — [|x [|%)%+1/2 with respect toW,2 on
B¢. Furthermore, the correspondence also gives a generating function of these projections.

2.3. Monomial orthogonal polynomials on the simplex

Theh-spherical harmonics associated to (1.1) are also related to orthogonal polynomials
associated to the weight functiomig’ in (1.3). If Y € ’Hg,‘fl(hi) is ank-harmonic that is
even in each of its variables, th&ncan be written as

YO)=r"P(xd, ..., x3), y=r(x1, ..., X0 xar1), 7=yl (2.9)

The polynomialP (x), x = (x1, ..., x4) € R? is an orthogonal polynomial of degreén 4
variables with respect t&, on T¢. Moreover, this defines an one-to-one correspondence
between the two sets of polynomiddss].

Since the simplext’ has a natural symmetry in terms 6fy, ..., x4, Xg+1), X441 =
1 — |x|, we use the homogeneous coordinates= (x1, ..., x4, Xq+1). For the monomial
h-harmonics defined in DefinitioR.1, the polynomiaRy, is even in each of its variables,
which corresponds to, under (2.9), monomial orthogonal polynon&ilsn V,‘f(WKT) in
the homogeneous coordinatEsThis leads to the following definition:
Definition 2.9. Letp = |x| + % Define polynomialsﬁ{(x), a e N4, by
d+1

L—r?iLtar
=1

1
c
" /[1,1]d+1 (1—2(b1xat1 + - - - + bay1xasitasr) + |bI12)P ;
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= Y b*RI(x). xeT? xpa=1-|xl.

oceN8+1
The main properties ak? are summarized in the following proposition.

Proposition 2.10. For eacha € Ng” with |a| = n, the polynomials

2221 (p)a1  (1/2)4

RT(x) = RT (x),
« () 20l c+1/2, W
where
1 1 1
Rl(x):X"‘FB(—:x,—oc—x—l——;—2|oc|—p+1;—,...,—>
2 X1 Xd+1
(k4 1),
=(-1)" ——————— Fu(la| + || +d, —a; k + 1; X
()(n+|x|+d)n Ao] + [x| )

are orthogonal polynomials with respect ¥/ on the simplex’?. Moreover,R! (x) =
X*— Q4(x), whereQ, is a polynomial of degree at most- 1, and{RO{, o= (a,0), x| =
n} is a basis for the subspace of orthogonal polynomials of degree

Proof. We go back to the generating functionveharmonics in Definitior2.1. The explicit
formula of R, shows thatR, (x) is even in each of its variables only if eaghis even for =
1,...,d+1. Lete € {—1,1)%*L. ThenR,(xe) = Ry(e1x1, . .., €441Xd+1) = €*Ry(x). It
follows that

> bzﬁRz/;(x)zzd—:il Yoot Y Ry(xe).

BGN‘éJrl O(EN8+1 86{_1’1}d+1

On the other hand, using the explicit formulalgf, the generating function gives
1

71 Z Z b*Ry(xe)

ee{—1,10+1 4 NgH

— e /[ s 3

sef{—1,1)d+1
x [IH A+ m)a— et dt
(1 — 2(bix1t1e1 + - - - + bas1xa41ta+1€4+1) + |b]1%)P

for ||lx|| = 1. Changing variables — t;¢;, the factthad ", Hf’:f (1+¢;t;) = 2?1 shows

that the generating function @f,;(x) agrees with the generating functionﬂg (xf, ce,
x§+1) in Definition 2.9. Consequently, the formulae Bf follow from the corresponding
ones forRy,. The polynomialR! is homogeneous iX. Using the correspondence (2.9)
between orthogonal polynomials ¢if and on7?, we see thaR? are orthogonal with
respect tov . If oy41 = 0, thenR (x) = x* — Q,, which proves the last statement of the
proposition. [




Y. Xu / Journal of Approximation Theory 133 (2005) 1—-37 13

In the case of,1 = 0, the explicit formula oR]” shows thatRZ;’O) (x) = x* — Qu(x);
settingb,y+1 = 0 in Definition 2.9 gives the generating function d?&o). The explicit
formula of R(Ta’o) can be found if7], which appeared earlier in the literature in some
special cases. The generating functiorR@fappears to be new in all cases. We note that if
all k; = 0, then the integrals in the Definitich9disappear, so that the generating function
in the case of the Chebyshev weight functidd (x) = (x1...xs(1 — |x|))~1/2is simply
(L—2(b, x) + bIH7L.

3. Symmetric monomial orthogonal polynomials

Let Sy+1 denote the symmetric group @f+ 1 objects. For a permutatian € Sy41 we
write xw = (Xy(1)s - - -, Xw(@+1)) and definel' (w) f (x) = fxw). If T(w)f = f for all
w € Sy+1, We say thatf is invariant undeS; 1.

Foro e N‘é andw € Sy+1, we define the action ab on o by (aw); = a,,-1(;). Using
this definition we havéxw)* = x**.

3.1. Symmetric monomiatharmonics

Inthis section, we assumethat= - - - = k441 = k. Thenthe weight functioh, in (1.1)
is invariant undesS, ;1. LetH4+1(h2, S) denote the subspaceloharmonics i+ (h?2)
invariant under the grou, 1. Our goal is to give an explicit basis fét?*1(h2, S).

A partition /. of d + 1 parts is an element iNG™ such thatl; > /o> - - > A441. Let
Q7+ denote the set of partitions a@f+ 1 parts. Let

QI =2 e NG iz de> - 2apa. Al =n),

the set of/ + 1 parts partitions of size, and IetAZJr1 = {4 € Q, : 11 = A2}. For apartition
A the monomial symmetric polynomiai; is defined by[14]

m;(x) =Y {x*: o being distinct permutations aff .

Let B;11 denote the hyperoctadedral group, which is a semi-direct prodtﬁgﬂf and
Sa+1. A function £ is invariant undeBy,1 if f(x) = g(x7, ..., x7, ) andg is invariant
underS, ;1. Since the weight functioh, (x) = [ |x;|* is invariant undei,, 1, the
monomialsx® and x? are automatically orthogonal wheneverand 8 are of different
parity. Hence, closely related #¢*1 (12, S) is the spacé{¢*1(h2, B), the subspace of
h-harmonics irﬂ-[ff”(h%) invariant undei3,1. Recently, Dunk[6] gave an explicit basis
for #4+1(h2, B) in the form of

pix) =m;(x%) + Z {epmu(x®) : pe QI
Wi<Ai, 2<i<d +1,p # ), (3.1)

wherex? = (x%, ..., x7, ;) and the coefficients, were determined explicitly, and proved
that the sefp, : 1 € 49"} is a basis o4 (12, B).
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Using the explicit formula ofR, we give a basis fo’ﬁ-lﬁ“(hﬁ, S) in this section. Let
Sa+1(A) denote the stabilizer of, Sy+1(4) = {w € Sy41 : Aw = A}. Then we can write
m; = Y x** with the summation over all coset representatives of the subgSpup(/)
of Sg41, which we denote by, 1/S411(4), it contains allw such thatt; = 4; andi < j
impliesw(i) < w(j).

Definition 3.1. Let 1 € Q411 Define

;0= > RuW.

weSy+1/Sa+1(A)

Proposition 3.2. For 1 € QZH, the polynomialS;, = proj,m; is an element of
HI+L(h2; S). Moreover the set(S; : 4 € A9} is a basis of¢+1(h2, S).

K’

Proof. The definition ofS; and the fact thaR,, (x) = x* + ||x[|2Qx(x) shows

i)=Y @ X () = my(x) + X7 Qx),

weSy+1/Sa+1(4)

whereQ e 1977, Also S; € H+1(h2) since eactR, does. HenceS; = proj, m;. It
follows from (2) of Propositior2.5that,
(=1)

7
_ 2p+2 -2
$)(x) = 200, [ 17 m (D) (Jlx ),
which shows thass; is symmetric. Since dinH+1(h2, S) = #49%1, we see thats; :
4 € A9y is a basis o4t (h2; S). O

The fact thatS, is a symmetric polynomial also follows from a general statement about
the best approximation by polynomials, provedlihfor L? (S¢) and the proof carries over
to the casd.”(S4; h%). Since the proof is short, we repeat it here. Let

1/p

If1lp = (c,; /S , |f(y>|”hi(y)dw(y)>
for 1< p < oo and let| f ||« be the uniform norm o<.

Proposition 3.3. If f is invariant undeiS,. 1 then the best approximation of f in the space
L? (8%, h2) by polynomials of degree less than n is attained by symmetric polynomials.

Proof. LetP ¢ Hﬁj. Sincex1 = - -+ = Kg11, hy IS invariant under the symmetric group,

and so is the norms of the spat(s?; 12). Hence, the triangle inequality and the fact that
f is symmetric gives

1
”f_P”p:m > lfGw) = Paw)ll,

weSy11
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1
> T Yo fewy— Y Paw)| =If— P,

weS 41 weS,+1 P

where P* is the symmetrization of. SinceP* € ij*l, this shows that the best approxi-
mation of f can be attained by symmetric polynomials of the same degiiee.

The best approximation in2(S¢; hf,) by polynomials is unique, so that a best approx-
imation polynomial to a symmetric function must be a symmetric polynomial. Thus, the
above proposition applies 1), as § — m is the best approximation 0 in L2(S%; h?)
by polynomials of lower degrees.

From the definition of5;, it is not immediately clear th&; is symmetric. Next, we give
an explicit formula ofS; in terms of monomial symmetric functions and powerg.of.

We start with the following simple observation:

Lemma 3.4. Letw € Sy11. ThenRy(xw) = Ry (x).

Proof. This follows fromthe generating function &f,(x). Indeed, letd,.(r) = ]_[l‘-lill cr(1+
t)(1— tl?)"—l; then®,(r) is invariant undeS, ;1. Hence, using the explicit formula &f,
in (2.2), it follows from the Definitior2.1 that

- 1
beR (xw):/ @,c(1) dt
2R Cnapt (1= 25 biew)it; + [1b12)1x12)°" "

1
= D, (1) dt
/[-1,1]d+1 25w Dt + bRy "
=Y w N Ryx) =Y b Ry() = Y b R (),

since the sum is over all Ng“. |

We need one more definition. For any N‘é”, letoat be the unique partition such that
ot = ow for somew € Sy, 1.

Proposition 3.5. Let € Q" and letp = (d 4+ 1)x + (d — 1)/2.Then

S;(x) =m (1) Z a)_,y”xnz\ﬂ w’ x € RItL,
Py m(j—op+ (1)
where
o (=2 +[A+1D)/2)y(=[(A+1)/2] =k +1/2),
hy = :

(=14l = p+ D!

Proof. Letd; = |Sy41(4)|. We can writem; (x) = d; 'Y x* and, using Lemma

3.4,

weS 41

S;0=d;t Y R =dt Y Ryw).

weS;11 weSy41
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The coefficientsz, , appear in the explicit formula ok;. Indeed, from the formula in
Proposition2.3, R;(x) = Y a;_,|x[127x*=%. For w € Sy41 and A, y € N, we have
(Jw)y = (A),,,-1. Therefore, aguw| = |o| for & € N§*%, it follows from the formula of
a,ythata,, , = a; ,,,-1. Consequently,

2 Riw= 33 el

WESy+1 WES+1
2yl Aw—2ywt
=2 Zaz,vwflnxn o=z
weSgy1 VY
2 A—2)
:Za; [lx]l 71 Z x¢ /)w

weSi+1

since the summation is over all € Ng. Note that the coefficients; , = 0 if y; >
Ai — [(4 +1)/2], so thatl; — 2y, >0. Therefore, we can write

— 2 —_29t
o XTI = N AT =y gim gy ().

weS4+1 WES 41
Put these formulae together, we get

S0 =d; Y a1 d gy m g+ (X),

?
which gives the stated formula upon using the fact thatl) = (d + 1)!/d;. O
In the simplest case af= (1, 0, ..., 0) = ne1, we conclude that

- PR G -k ),
ral) =2 Cn—pr Dt

| x ||2jm(n—2j)el(x)
J

d+1 o
= e Y2 [k 7] e 1, (3:2)
i=1

wherep = (d + 1)x + (d — 1)/2, and the second equality follows from the definition of

c*M or from Corollary2.8.

Since the sum in the formula of, is over ally € N‘é*l, somem,, may appear several
times in the sum. With a little more effort one may wrifg in a more compact form.
Evidently, this depends on how many parts/oére repeated. We shall consider only a
simple case of = (g, ..., g), in which all parts are equal.

Corollary 3.6. ForA=1(q,...,9),q € Nop,
S0 = > agulx®my_gu(x).

‘ueQd+l

Proof. In this case, it is easy to see that,,, = a, , for eachw € S;41. Moreover,
= (d + 1)!. Consequently, using the fact thal, ¢, = Zueszd“ d,jl ZweSM Cpw»
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it follows that

S;(x) = > a1 1P d gy m 2+ (x)

(d+ D! S

1 _
RV Z dﬂl Z a/l,,uw”x”Z‘Atld(/l—Zuw)*m(/l—Zuw)*(x)

peQi+t weSyi1

1
2
= 2wl o D g (),

pneQd+t weSy 41

since/d = (q, ..., q) implies thatd;_o,,,)+ = duw = dy. Also, the special form of.
impliesn (;_zu)+ = M;_2(w)+ = M;—2y, Which completes the proof.[]

Sincemy; (x) = m;(x%,...,x2 ), the theorem shows that the $6b; : 1 € A9}
is a basis for the spacé?+1(h2; B). These results are interesting even in the case of the
ordinary harmonicsi{ = 0). The only other symmetric orthogonal basis known is given
by Dunkl [6] recently for?-tfﬁl(hi; B). It should be pointed out, however, thgt are not
mutually orthogonal foi € Qﬁ*l. We do not know how to construct an orthonormal basis
for HI+1(h2; S) or if there is a compact formula for thie? norm of S;.

Since||x|| is symmetric, one can WritHEtzmﬂ in terms of symmetric monomial poly-
nomialsm, so thatS,, can be written in terms ofzﬂ(xz) as in Dunkl’s basis (3.1). It turns
out, however, that the two basg; : 4 € 49T} and{p, : 1 € A9} are quite different
and they are in fact biorthogoni].

3.2. Symmetric monomial orthogonal polynomials on the unit ball

On the unit ballB¢ we consider the weight functioW 2 (x) with k1 = --- = k4 = 0.
Writing req41 = u, we write W2 instead of,”. That is,

d
wE @) =T wP@—xi»ev2, x e B,
i=1

This weight function is evidently invariant under the symmetric gréyp_et V,;’(W,fu; S)

denote the space of symmetric orthogonal polynomials of degréd respect tdvgﬂ. The

dimension of this space is dim,f(W,f#; S) = #QZ, the cardinality ofd-parts partitions
of sizen, since a basis can be obtained by applying Gram—Schmidt process on a basis of
symmetric polynomials of degree at masin d variables.

For symmetric orthogonal polynomials we cannot use the correspondence (2.8) between
h-harmonics and orthogonal polynomials on the unit ball, smﬁex) = R,0)(X, Xg+41).
On the other hand, the polynomiRE in Definition 2.7 is similar toRZ specified in Def-
inition 2.1. The similarity allows us to carry out the study in the previous subsection with
little additional effort. We define“f as in Definition3.1:
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Definition 3.7. Let . € Q. Define

Py = Y REW.
weSy41/Sa(A)

Proposition 3.8. For 4 QZ, the polynomialS is the orthogonal projection of the sym-
metric monomial polynomiah ontoV,‘f(W,fu; S). Moreover,the set{S; : 1 € QZ} isa
basis ofd (WS ; S).

We again havé?fw (x) = Rf (xw) foranyw € S; and we can derive an explicit formula
of $% as in Propositior8.5:

Proposition 3.9. Let 4 € Q¢ and letp = dx + u + (d — 1)/2.Then

m()—oy)+(X)

, xeRY
mj—oy+(1)

Py =my(1) Y az,

2y< A
wherel = (1,...,1) e N¢ and

_ (At [0+ 1)/2D, (=[G + 1)/2 -k +1/2),
(=1l = p + D! '

Ay

In the simplest case df = (1, 0, ..., 0) = ne1 € R?, we conclude that

S,ﬁ,l(x) - Z (—n+ [&21])]'(—[%] — K1+ %)j

(—n—p+ 1)jj! m(n—Zj)e]_(x)

J

d -1
3 ] i
)

i

wherep = dk + u+ (d — 1)/2, sinceRB, (x) = Ryer (x, xat1) for (x,x441) € 54,

ney
whereej = (1,0,...,0) = (e1.0) € R*™, and Corollary2.6 shows thatRZ, (x) =

. e e
I:k}gp_KhKl)iI C’(zﬂ Kvit)(xi).

3.3. Symmetric monomial orthogonal polynomials on the simplex

We can also give explicit formulae for the symmetric monomial orthogonal polynomials
with respect to¥,]" on the simplex.
On the simplexT?, it is natural to consider the symmetric groSip, 1 of the vertices of
74, Afunction f (x) onT¢ is symmetric if in the homogeneous coordinakes: (x, x441),
xg+1 = 1—|x], f(x) = g(X) is invariant undeS,1; that is, if g(Xw) = g(X) for every
w € Sy41. Let V,‘,”l(WKT; S) denote the space of orthogonal polynomials of degrteat
are symmetric.
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Proposition 3.10. For each/ € Q¢+, the polynomial

ST = Y RT (%)
weSy+1/Sa+1(4)

is a symmetric orthogonal polynomial aﬂ§ x)=m;(X)+0x),0 € HZJ_“%. Moreover,

(=)y(—4 — K+ 1/2)y mj_p+(X)
(=21 = p+ Dyt m_y+ (1)’

ST =m@)
wherel = (1,...,1) € Ng™. Furthermore,the set{s” : 1 € A¢*'} is a basis of
VLW ).

This follows from the correspondence (2.9) and the properti&g,oNotice thatn, ) (x) =
mi(xf, e, x3+1).

4. Norm of the monomial polynomials
4.1. Norm of monomiai-harmonics

Sincer, is orthogonal to polynomials iﬁﬁﬂ with respect ta}lﬁ dwons?andR,(x)—x*
is a polynomial of lower degree when restrictedstg the standard Hilbert space theory
shows that the polynomiat,, is the best approximation af in the L2 norm defined by

12
I fllz = (e}l /5 I OPR) dw(y)) ,

wherec;, is the normalization constant of. In other words, the polynomial* — R, has
the smallest.? norm among all polynomials of the forn® — P(x), P € 1197} on §¢.
That is,

[Ryll2="min [lx* = Pl2, || =n.
d+1
n—

In the following we compute th&? norm of R,

Theorem 4.1. Letp = |«| + 451 Leto € N§ ! and denotef = o — [(o + 1)/2]. Then

P+ 1/2); 5 =By (ma+ p—x+1/2),

/ 2,2 —
) /Sd | Ry () |“hic(x) dow = oe Ca—w+ 12,70 T+ p)

Y
1d+1
) ﬂ' (K + 1/2)3(7[)' 1—[ C;[_%'K")(z)tw‘”zf’*ldt,

(P 0 g
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Proof. Using the explicit formula ofk, (x) and the Beta-type integral,

d+1

’ 2072 _ I'(k|+(d+1)/2 I'o; +x;+1/2)
h /s X de = e M+ @+ /2 11 Tk +1/2
(K +1/2),
P+ D

it follows from the explicit formula ofR,, in Proposition2.3that

c) /Sd IRy (x)|?h2(x) dw = ¢}, /Sd Ry (x)x*h2(x) dw

_ Z (_ﬁ)y(_“ +B—rx+ 1/2)y(K + 1/2)<x—y
(=lel = p+Dpyp + Dy~

Y

Rewriting the sum usinga),,—, = (—1)"(a),/(1 — n — a),, and(—a),/(—a + 1), =
a/(a — n) gives the first stated equation. To derive the second equation, we show that the
sum in the first equation can be written as an integral. We define a function

(_ﬂ)v(_fx + ﬁ - K + 1/2)y | ‘_l,,H_
F — / v o Y p.
« g Coa—r 11200 =+ )

Evidently, F(1) is the sum in the first equation. Moreover, the sum is a finite sum over
y<pas(—p), = 0fory > p, it follows that F(0) = 0. Hence, the suni'(1) is given by
F(l) = [01 F'(r)dr. The derivative ofF can be written as
F/(r) _ Z (_ﬁ)y(_“ +p—x+ 1/2)7 lal—lyl+p—1
(—o— 1+ 1/2)!

’}7
— pladtp—1 ﬁ Z (_ﬁi)y,-(_ai + B — i + 1/2)*/,- i
(=0 — ki +1/2)y,7;!

i=1 7
d+1

_ pladp-1 1—[ JFy —pi =i+ P —rxi+1/2 1 .
-1 —o; — K +1/2 T
i

The Jacobi ponnomiaP,f“’b) can be written asF1 in a different form[15, (4.22.1)],

2n+a+b\ [t—1\" —n,—n—a 2
PD) (1) = —=) F : p—
w0 n 2 ) ¥\ on—a-b 11
Use this formula with = f;,a = o; — 2f; + 1; — % b=0andr = (1-1)/2,and then
useP " (1) = (=1 P>¥ (—1), we conclude

d+1
Fi(r) = (k+1/2)4pp! Jlal—IBp—1 I1 P/;g,a,»—zﬂ,-m—l/z)(zr —1).

(k +1/2), L
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Consequently, it follows that

(k+1/2),_ [}ﬁ' (0 0; —2f;+K;—1/2) lot| =Bl +p—1
F(l) = w12, / ]_[ @2r —1r dr. (4.1)

From the relation (2.5) it follows thal’/g0 4 =2hitr1=1/2

P(O L0 —2f;+Kx1—1/2)

22 — 1) = 2D ) if o

22 — 1) = ¢ (1) if o; is odd. Hence, changing
variablesr — t2 in the above integral leads to the second stated equatian.

is even, and

The constant in the second equal sign can be written in term,él/&f""), the leading
coefficient ofC(l/2 +%1) , by using (2.7) and considering being even and odd separately.
As an equivalent statement, the theorem gives

Corollary 4.2. Leta € N§ andn = |«|. Then

1 d+1 Gk
2p(k+3), /1 Cat (1) (o421 g,
0

inf  [lx* — Q)13 =
i=1 k(zh)

gel?_, (0o

In the case ofd = 1, the integral contains the product of two Jacobi polynomials.
Moreover, the parameters satisfy a condition for which the integral can be written as a
terminatings F> and simplified by the known formula (s¢& vol. 2, p. 286])

1
0,61) 5. 0.02) (5. _ 13,81+l
/O Py 7@ = 1) Py P (2r — Dyr dr

_ UBDMIal + Dy (o1 + Dy o2+ Dy
(1] + D (01 + L)g, (02 + Dyp, (lol + 21f1 + 1)’

Using this formula with an obvious choice of the parameters, the nomg &dr 4 = 1 can
be written in a compact form. Equivalently, this gives

Corollary 4.3. Leta = (a1, ap) and writee = [(« + 1)/2]. Then

(ID)g) (el = |a])!
f
Qem I = 000lz = (Il + Doy (16D o

(5 8)
X | K1+ = K2 + = .
2 o1+02—02 2 g2+01—01

Ford > 1 andx = ne;, the sumin Theorer.1is a balancedF>, which can be summed
using the Saalschiitz summation formula. Alternatively, we can evaluate the ndtyp of
by using the explicit formula oR,,, in Corollary2.6and the formula

/ fx)dog = / ’ f f(cosb, sin 0x") dwg—_1(x")(sin )1 d6. 4.2)
sd 0 Jgd-1
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This way, the norm oR,,., can be derived from the leading coeﬁicieﬁft’”), givenin (2.7),
of " and the norm o€ (1). We denote by:\** the L2 norm of " with respect
to the normalized weight function, ,w; (1), wherew; ,(t) = [t|?*(1 — ?)*~/2 and
=TI'(u+1/29I'A+1/2)/T(A+ u+1). Itis given by [7, p. 27]
h() w_ (4+ %)m A+ Wm(2+
2Tl DG+ et 2m)’
G Ot D+ Puyr G+ )
homy1= 1 :
m'(:u + Q)m-i—l(i +u+ 2m +1)

We will follow the second approach to evaluate the normRgf; since an intermediate
result will be used later in the section.

(4.3)

Corollary 4.4. Forn € Ng, letm = [(n + 1)/2]. Then

(n —m)! (ki + Kl — i+ %),
|nf ||x;’ — 0|5 = — ( ) ( 2), .
Qelt (Il + S5y, (m + 16l + 452), (m+ 5+ 3)

n—m

Proof. We only need to prove the case= 1. Forx e S9, write x = (cos0x’, sin 0),
x' e §971 Letdy = p — k1 = || — k1 + (d — 1)/2. Using the explicit formula oR,,,, in
Corollary2.6, Eq. (4.2) with a change of varialsle= cos 0 shows that

1
2
C;l/ [ Rpeq (1) dt:c;l/
sd -1
d+1

/Sd 1 1_[ 717 dewg—1.(x")

— hglﬂq)/ [k’(17~1,k’1)] )

2
C}gﬂ.l,l{l) )

Hence, the stated formula follows from the explicit formulag 6 in (2.7) andx"* in
4.3). O

We note that Corollarg.2and the above proof implies the formula

1
t

() \a|+2p 1dt c/ll,'ul/
k(z K1) -1

(2 K1)

14 % 2
Ci )y
k'(lil,lcl)

2p(rk1 + z)n /
0

W), e () dt,
(P)n Ao

which does not seem to follow from a simple transformation. This suggests the possibility
that the norm ofk, may be expressed in some other, perhaps more illuminating, ways.

In general, however, the norm &, may not have a compact formula in the form of a
ratio of products of Pochhammer symbols. For example=f (a1, a2, 0, .. ., 0), then the
integral in Theorend.1becomes (see (4.1))

1
(0, p) == / P @2r — 1PV 2 — 1yrortorthitlae g (4.4)
0
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witho; = o; — 2, + ki —1/2,6; = o; —[(; +1)/2] anda = |k| — k1 — K2+ (d — 1) /2.
Using thes Fy formula of the Jacobi polynomials, this integral can be written as a single
sum of a balanceglF; series evaluated at 1,

(—DPr(o1+ D, (61 +a + D)
B! (Bl + lol +a +2) (Bl + o] + a + 2)p, (61 + a + L)g,
X4F3(—ﬁ1,ﬁ1+01+1,|ﬁ|+|a|+a+1,|ﬁ|+01+a+1_1>

(o, p)=

lol +1pl+pf2+a+2, 01+ 1014+ +a+1
(4.5)

This 4 F3 is a finite sum, but it does not seem to have a compact form.

As a consequence of Theoretrll, the integral of the product generalized Gegenbauer
polynomials in the theorem is positive, which does not seem to be obvious. It shows, in
particular, that the expressidtia, f3) is positive ifg; >0, o; >0 anda > 0.

For the symmetric orthogonal polynomials, there is one simple case for which we can
compute the norm explicitly, the norm of the symmetric polynomsgls in (3.2). Recall
that by Corollary2.6and (3.2),S4e; = Ruey + -+ - + Rue,,, Wheni; =k for 1<i <d + 1,

andR,,, is given in terms o’ ™) (1). The key ingredient is the lemma below.
Lemma 4.5. LetJ; = |x| — k; + 45*. Then forn = 2m,

(2 + %)m h;(zﬂlyKl)

h2(x)dw = (—1)" — L
§ A1+ %)m [k,(/bl’hl)]z

A1, A2,
y / " ) 6 (xp)
" Ja § G20 G212

Proof. Forx € S¢, write x = (cos0, sin 0x’), x’ € $9~1 and 0< 0< 7. Using the inte-
gration formula (4.2) and changing variable- cos 6, we see that the left-hand side of the
stated integral is equal to

, /l C’SZLKI)([) [/ C:L)'Z’KZ)(M)C/) d+1 :|
§d—1

s ’
h |, T Gi G2.k2) [T Ri1? desg-ax)
1 kn kn i=2

X |t2F(1 = 12173
Sincen = 2m, the integral inside the square bracket is a polynomial of degrger
whose leading term i€l — 12" = (—=1)"+?" + . ... Consequently, by the orthogonality of
C,(l)“l’“) (1), it follows that the above integral is equal to
1 ~(Aa.x1)
C t )
(—1)mc,;/ - ,( ) 201201 — 2N dy
1 kr(lfhlskl)

d+1

x / » 2" T W1 doa-a(x)
N

B i=2
2+ 3m 1

= (D" (A + %)m I:kr(lll,rcl)]

1
I1,K 2
5 Cha et / . |CRD (1) 2w, ey (1) di

using (2.4), which gives the stated formuld]
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Together with the proof of Corollarg.4, this lemma allows us to compute the norm of
any linear combinatiof1 R,e; + - - - + bg+1Rne,., ., Without the need of assuming = «
for all i. We shall, however, use it only in the casew@f= - - - = k441 to compute the norm
of S,..,. The proof shows clearly how the norm of the general case can be computed.

Proposition 4.6. Letky = - - - = k441 = k. LetZ = dx + 45%. Then forn = 2m,

inf x4 xt — 0WIE=d+ D [1+d=D)" -+ 3
X .. X — X = — -
gemitt o ’ G+ Dm
G+ DG+ 1 (i + 3)m!
A+ 1)2m(A+ K+ Loy

and forn = 2m + 1,

' A+ DG4 ms1(< + Fmyam!
inf ||xil+"'+xs+1—Q(X)H%:(d—i—l) 2" mt 2Imirm:
Qeﬂfhi O+ K)omi1(A + K+ Dot

In particular, the casec = 0O and/ = (d — 1)/2 > 0 gives the best approximation §f,,
in the L2 norm with respect to the surface meastire.

Proof. Since|k| = (d + 1)k, 4; in the lemma becomes= dk + (d — 1)/2. By 3.2), for
x|l = 1, we have

/Sd [Sner (0)]7 h2(x) deo

d+1 2

;11
- / ) [E [k,(f”‘)] C,(f”‘)(xi):| h2(x) dow
57 Li=1
d+1 (25) 2
_ Chmm(xi) | 2

(4.1) (4,K)
Z GV ()G (xj) o
i /;d K1) 1 (o) hi(x) dow.

If n = 2m + 1, then the integrals in the second sum is zero smg“gfl(t) is an odd
polynomial. Hence, sinck, is invariant under the symmetric group, it follows
(1) 2
/ 2 2 _ / Cn (-xl) 2
c /Sd [Sner (0)]"hi(x) dw = (d + )¢, /w [—k,ﬁi”" ] he(x) do

@+ Dh
Sl
[

as in the proof of Corollaryt.4. If n = 2m, then the integrals in the second sum can be
evaluated as in Lemm&5, so that we get

c;z /:gd [Snel(x)]zhi(x) do
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[ 2
i (x)
NG ky”

(2.K) (2,K) 2
Cy7 7 (x1) Gy (x2)
+d(d + 1)c|, f n 0o (’; 5 h2(x)dw
Sd kn», k 5

(A, K)
=(al+1)h’f—2 <1+d( )'"( +2)’")
I:kr(lﬂ,lc):l A+ 2)m

Using the formulag"™ in (2.7) andr"** in (4.3) completes the proof.[]

In [1], some invariant polynomials of lower degrees with the l€a&tS?; dw) norm on
the sphere are studied. In particular, for ftfenorm, it is computed there that
24(m — 1)
(m + 2)%(m + 4 (m + 6)

inf xf+ 4 xh — 0I5 =
elly

This is our general result with = 0,n = 4 andm = d + 1.

The Propositiort.6 gives the norm of the symmetric monomial polynonigl, . We do
not have a compact formula for the norm of the symmetric monomial orthogonal polyno-
mials in general.

4.2. Norm of monomial polynomials on the ball

Foro € N, the polynomialRZ (x) is related to the best approximation.td. Let w?
denote the normalization constant of the weight functigf in (1.2). Define

1/2 I'(lk|+d+1)/2
= (w? 2w B (x)d > Cowf= :
I£llz.5 (wk/;lf@ﬂl (@) dx TN s+ 172

As it is shown in the previous section, fere N¢, the monomial orthogonal polynomials
RB isrelated to thé-harmonic polynomiaR 4, o) by the formulaR 2 (x) = R,.0)(x, x4+1),
(x, x441) € §¢. Using the formula

‘&fwww=/ [T P + fxr, —V1= HX)LF_MF

the norm ofR,, follows from that ofR o) right away.

Theorem 4.7. The ponnomiaIRB has the smallest f |2, 5 norm among all polynomials
of the formx* — P(x), P € I1Y_,. Furthermoreor o € N§,

2oy (ki +3), 1.2 clen 0
IR213 5 = I Ry ll2 = —— “‘/ [T vty
(0o 0 .7 k(2 )

i=
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For the classical weight functioW,(x) = (1 — ||x||%*~1/2, the norm ofR,, can be ex-

pressed as the integral of the product Legendre polynorRjals = Cl/z(t). Equivalently,
as the best approximation in tfié norm, it gives the following:

Corollary 4.8. Letp = u+ (d —1)/2 > 0andn = |of for o € Ng’. For the classical
weight functionW, (x) = (1 — ||x||?)*~1/2 on B,

anl;n [|x* —Q(x)||23— i l(p) / 1_[ Pal(t)t”ﬂ“zﬂ Lar.

Proof. Setx; = 0 for 1<i <d andu = x441 in the formula of Theorerd.7. The stated
formula follows from(1)2, = 2%*(1/2),(1),, n! = (1),, and the fact thaC,Sll/z’O)(z) =
Cil20) = Pu(@). O

In particular, ford = 2, the product involves only two Legendre polynomials. Since
P,(t) = P(O 0 (1), the integral ford = 2 can be written as a terminatings series using
the formula in (4.4) and (4.5). For the unit weight function ®# (that is, W1 o(x) = 1),
another formula ofR, is given in[3], writing it in terms of the basi§U, (cos(kn/(n +
D)x1 + sinkn/(n + 1))x2) : 0<k<n}, whereU, denotes the Chebyshev polynomial of
the second kind, and the norm B, |«| = n, is given as follows i3]

min / Ix* — P(x)|?dx
pelld_, JB2

n4 1 2n 2
= (sin 0 —is cos0)*(cosO + is sin 6)*2 ds> do,
2n+3 /0 (/1

inwhicha = (a1, a2) andi = +/—1. This formula is quite different from the one contained
in Corollary4.8. In fact, it is not all clear how to derive one from the other.
Settinga = ne; in Theorem4.7 and using Corollary.4, it follows that||R5, ||2 B

— prv /[k,(,;'l”“)] . Following the proof of Propositio#.6 we can also compute the

norm of §2, with respect toW,ﬁ3 w The result is essentially the same as in Propos#ién

withd + 1 replaced byl, k1 = =Kg =K, U =Kgp1andi = u+(d—-Lx+(d—-1)/2.

4.3. Norm of monomial polynomials on the simplex

In the case of simplex, the polynomial! is the orthogonal projection ok* =
x3t x5 (1 — |x|)%+1, Letw? denote the normalization constantif . Define

1/2 I'(kl+d+1)/2
= (w] 2wl (x)d ) . owg = 5 :
||f||2,T (wk /Td |f(-x)| K (-x) X U)K ld:i[ F(Kj + 1/2)
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Let F(x) = f(x%,...,x3,4). Then the norm is related to the norm §fvia

c;l/l f(xf,...,x§+l)h§(x)dw=w,{/d fxt, .. xa, 1= |xDWI (x) dx.
S¢ T

SinceR! (x2,...,x2,1) = Rau(x1,...,x441), the norm ofRZ can be derived from the
norm of R2,. We use (2.5) to er'mS(l/2 ki) (1) = P(0 %i=1/22;2 _ 1) and change variable
1% — rinthe integral in Theorem.lto get the foIIowmg

Theorem 4.9. Letf e Nd™ andp = ||+ (d —1)/2.The ponnomiaR; has the smallest

I - ll2.7 norm among all polynomials of the formf — P, P € Hfﬁl 1» and the norm is
given by

w,{/ |Rp(x)PW/ (x) dx
Td

p(x+3),, B (~h-r+3),
Dap 5 (~2p—x+3) MBI~ 11+ p)
pp! (K + %)ﬁ 1 d+

/ 1_[ P(OK’ l/2)(2}’ 1)r|ﬁ‘+p Lar.
0

(P)21p i1

In particular, if 8;,; = 0, then the norm oR 4 ¢ (x) is the smallest norm among all
polynomials of the formx# — P, P e IT¢_,.

Corollary 4.10. Leta € N§ andn = |«|. Then

d 1
pot | iz (ki +3),
inf ||x°‘—Q<x>||§T= [Tiza (i + 2),
Qell ’ (P)215

1 d
X f 1_[ PCE,.O'K"fl/Z) 2r — Dyrld+r=1 gy,
i=1

The caseq; = 3 for 1<i<d +1 corresponds to the unit weight functi(W;(T(x) =1,
for which the norm is computed by an integral of the product of Legendre polynomials

P,(t) = P,ﬁo’o)(t). Indeed, settings; = % in the above theorem gives = d and the
following:

Corollary 4.11. Foro € N¢, n = o],

|2

min i /Td Ix* — Q)% dx = @ 1[ 1_[ Py, (2r — 1)1 g,

ger;_y d! i=1
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Ford = 2, the product involves only two Jacobi polynomials, and its integral can be
written using the formula in (4.4) and (4.5) in terms of a terminatjiig series (setting
g; = 0anda = 1).

5. Expansion of R, in terms of an orthonormal basis

The elements of the s¢R,, : |a| = n,a € Ng“} are not linearly independent, since
the number of elements in the set is greater than the dimensiﬁﬁﬁf(hﬁ). It contains a
basis as shown in Propositi@b. The basis is not orthonormal, however, since its elements
are orthogonal to lower degree polynomials but not among themselves. On the other hand,
an orthonormal basis foH4*+1(h2) can be given explicitly in terms of the generalized

Gegenbauer polynomiats({l’“). We first state this basis then derive the expansioR,dh
terms of it.
Ford>1,x € Rt andx € N¢, we introduce the notation

o = (o), ..., 0q) and k)= (kj, ..., Kke11), 1<j<d+1. (5.1)

Since x4t consists of only the last element of write k4t = x4.1. These we treat
as elements img_”l andR?—/*2 respectively, so that the quantitied | and |«/| are
defined as before. Note?*1| = 0. We also introduce the notation

. . d— i
aj = aj( k) = |/ Y 4 [t + 2L

5o 1<i<d. (5.2)

Note that fore € N andx € R, 4y = k941 = kgy1. Finally, forx € R, let
r = |lx| and define:; = (sz + -4 x3,)Y?for 1< j <d + 1. Notice thatry = r.

Proposition 5.1. An orthonormal basis of{?+1(h2) is given by
Vo) = [An ] Wa(xs ), ¥y(x) = [A 7Y, (x5 50,

wherex e Ng and|o| = n,

d

o ~(aj.Kj)
Youlxs) = [ | ri/ Co ™ (xj/rj), Yolxs ) = Xat1 Yooy (X3 K + eqta),
j=1

inwhich A}, . = ((ka+1+ 1/2/(x| + (d + 1)/2)Y?Ay—cy ic4eg., @Nd

d
1 TR
(1nl + &2 [ 1@ +xpa;Caf ™ D).
2 Jn j=1

[A40i]” =

The formulae given above are a reformulation of the basis givEt6i(also[7, p. 198]),
where they are given in spherical coordinates which corresponds't9 = cos0y.1-j,
1< j <d. The formulae there are given in terms of the normalized generalized Gegenbauer

ponnomiaIsC“,(l)“’”) ") =1/ h,,)C,(l)“’“) (r). The normalization constant, is given byhﬁ =
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C,E)"“)(l)(i +w/(n+ A+ (cf. [7, p. 27]), which is used to rewrite the formulae in
[16] to the above form. The faet;(k + eqy1, a0 — eq) = aj(x, @), 1<j<d — 1, and
aq (K + eq+1, & — eq) = aq(x, o) + Lis useful for writing downd;, .

SinceR, € Hﬁ“(hﬁ), it can be expanded in terms of the orthonormal basig,and
Y,. Below we give this expansion explicitly. To do so, we need the following formula:

Proposition 5.2. Letr]? = bf + -+ +b3, ,andletp = |k| + (d — 1)/2.Then

d (“/ k)
> PR, (x) = > #Y‘,(x; ;c)]_[ r M
j=1

|ot|=n [v|=n l_[j:l(Kj +Clj)vj (aj Kj) (l)
Kd + Kd+1 (p) -
+Xx4+1bd+1 +1 . n Ya(x, %)
Kar1+ 3 S, [lj=1(ej +ajy;
d Db /)
x ]_[ r. T’
j=1 (@D}

wherev =v —eq,a; = a;j(v, k) andaj =aj(v—eq, K+ eq+1).
Proof. By the definition of the reproducing kernel, we can write

PuhZix.y) = Y (V@ 0¥ (i 1) + Y (x: ©) V] (v 19)) .

|v|=n

Hence, the second part of Propositmﬁ shows that

> bR, (x) = > (Vs 10 (y: 1) + V(s 19 Y (v: 1))

lol=n p [v|=n
Hence, the stated results follows from the explicit formul&afr; x) andY,(x; ), (p +

1, = (p)n(n + p)/p, and checking the constants.

This proposition shows that to expaRdin terms ofY, (x; x) we essentially have to work

out the expansion o[f]] —17; Cf,“’ " )(bj/rj) in power ofb. Furthermore, the relation in

(2.5) shows that
’ 2,
Cof1(0/ oy = xCg " Moo/ e M.
Hence, introducing the notatieriz) = o — 2[a/2], or equivalently,

0 ifo;iseven,

e() = (e1(), ..., &q+1(a)) with & (o) = { 1 if o; is odd

we can write forv € N andb € RIT,
(aj,Kj+e;(v)
Cz[x{,/é] G

d d
¢ 2[v;/2]
1_[ 7 bs(» )1_[ Fovi
(a K; J (aj,Kj+e;(v)
=1 7D (1) =1 Conyyzr D)

by /)
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(@j—3.xj+e;(V—3%)

4 J J 2 2
_ bs(» ) 1—[ 2[v;/2] P[v_,-/2] (ij/rj -1
p@—dure0=d
vj/2l 1)
(5.3)
wherev* = (v,0) € Ng™* andr? = b2 + .- 4 b3, ;. Consequently, the problem reduces

to find the power expansion of/the product of the Jacobi polynomials.

The expansion can be derived using the Hahn polynomials of several variables studied by
Karlin and McGregof13]. For one variable, the Hahn polynomialtx; a, b, N) is defined
using thes F» series by

=0,1,....N, (5.4)

0n(x:a, b, N) :=3Fz(_"’”+“+b+1’_x;1>, n

a+1,—N

wheres F is defined as the usugF, with the summation terminating at. These polyno-
mials are the discrete orthogonal polynomials defined on thgsét . .., N}, which are
orthogonal with respect to the binomial distribution, i.e.,

i @+ Db+ Dy
= x!(N — x)!
_=ED"'lb+ 1), (n+a+b+ 1)y
T N!@nta+b+1)(=N)(a+1),
A generating function for the Hahn polynomials of one variabld &

On(x;a,b, N)Quu(x;a,b,N)

Onms n,m<N.

(1+z)Nm XN: MY 0,015 a, b, Ny (5.5)
P(ab)(l) - — \n jna, o, : :

For several variables we denote the Hahn polynomialé liy; o, N). These are discrete
orthogonal polynomials indexed by € Ng, [v| <N which are defined on the sét €
N‘”l la] = N} and are orthogonal with respect to the binomial distribution given by the
parameterr = (01,...,04+1). They are defined by the following generating function,

Definition 5.3. Supposer € R with g; > —1, andN e N. Forv € Nd, |v|< N define
the Hahn polynomialg, (x; o, N) ate: € N&*, |a| = N by

(b ,05)

N— V
Iyl ‘V']‘[|f|‘ :

where|y/| = y; + - + yq41 andb; = a;(2v, 0 + 3) — 3 with a; as in (5.2).

@yi/ly/1=1) -y

(b o ¢v(°< o, N)y*, yeRML,
] 1) .
( =N

Settingd = 1, y1 = t, yo = 1 in the above, the left-hand side becomes

02,0 11 p(02,01)
P2t/ (1 4+ 1) — )=(1+¢)N( DrpTE (L;)

A+ @4 "
Pv(f'Z 01)(1) P1$fz’ﬂl)(l)
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and the right-hand side becomes

N
N! o1 N—o
—st((xlaN—OCl; 0'1»0'27N)x 'x !
“12_:0 a1 (N —oq)! " 172

(N
=> ( >¢v(0€1, N — a5 01, 02, N)t™.

o
o1=0 1

Hence,p,, (01, N — 015 01, 02, N) = (=1)"* Qy, (21; 02, 61, N).

Let us indicate how our definition agrees with that giverjli8]. There the generating
functionis denoted b, v ( 3 ‘ v), which is defined by an inductive formula (4&8, (5.7),
p. 278]and the first equation on p. 279). We make the following substitutioasd + 1,
& = (0441, Gdy>---501)s W = (Ya+1, Yd»---> Y1), ¥ = (Vg, V4—1, ..., v1), and work out
the generating function explicitly to obtain the form presented in DefinBi@nAlthough,
we will not use the explicit formulae or the orthogonal relationggfo; o, N), we state
them below for completeness and for future reference. Both are stdteg] iny inductive
formulae, from which the explicit formulae can be worked out using the aforementioned
substitutions. Further simplification leads to the formulagp(x; o, N) presented below.

Proposition 5.4. For o € N&™, |a| = N andv € Ng, [v| <N,

— (04 Dy,

(a; 0, N) =
¢\,(9€ o ) (—|OC|)|V| =1 ((1] +l)v.,»

(—lo/ | + [/ HH,
x Qy, (3 0, a;, |l | — v/ ).
The proof that the, («; o, N) are orthogonal with respect to the binomial distribution is
given in[13] and the constar®, below is given by inductive formulae (5.13), (5.14), (5.18)

in [13]. The verification (using the substitution that we mentioned earlier) is straightforward.

Proposition 5.5. For v, u € Nd with |v], || <N,

Z (04 1)y, (bv(a; 7, N)d)y(“’ o,N) = B\,vé‘r”u,

o!
lo|=N
whereB, is given by

DM(ol +d + Dy 1o @)+ b+ Dav (o + D!
" (=N)p N! (o] +d + Dz i1 (j+bj+1)y;(bj+ 1),

vV

For other properties of these polynomials, such as recurrence relatiofit3kee
Using Propositiorb.4 and5.3, we can now derive the expansionRf in terms of the
orthonormal basig,. Recall that («) = o — 2[a/2].
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Proposition 5.6. For v € Nd let p = || + (d — 1)/2and letv* = (v,0) € NI, Let
o e Ng”. If 24+1 iS an even integethen

1 (Ilv/2]1)!
Ry(x) = <;< - —) T o
2) =41 \\'\2::\%\ 11 (ki + i)y,

e(v¥)=¢e(x)

<o (3w e [3]) o

and if ;41 is an odd integerthen

1) Kq + Kd+1 (0v/2))!
e >

Ry(x) = <K + = 1 e
2 ) Kd+1 +3 vl =]a] H?:l(Ki +ai)y,
e(V)=e(@)

01 ~ 1 v
45 ([5] K-St e(V), ’[E}D Yy (x; 1),
wherev =v — ey, K = k + egr1 andd = o« + eq11.

Proof. Using (5.3) and the Definitioh.3we can expand the right-hand side of the formula

in Proposition5.2 in powers ofb. There are two terms, the first one contains only even
powers ofb,+1 and the second contains only odd powers. Hence, we need to consider the
two cases separately. For example, setting: x; — % andy; = bjz. so that|y/| = r/?, the
Definition5.3and (5.3) gives

d (aj,K;)

v Gy b)) _ (Iv/2IhH!
1_[ Ty (aj,Kj) 1 - B
j=1 G D =2

1
xqs[%] <ﬁ K— > +e(v"),

)

which gives the expansion of the first term in the right-hand side of the formula in Proposition
5.2. That is, for,41 being even,

= Py (lv/2]D!
Yo R =) >
a=n Vi=n |Bl=Ilv/2]| st +ay, P

|
Olg+1=even

1
X(f’[‘z'] (ﬁa K-35 +e(v),

) s e

To derive the formula oR,, we set B+ e¢(v¥*) = a = 2[a/2] + (). This givesf = [¢/2]
ands(v*) = ¢(a), so that

R )i (Ilv/2]D)!
Ry(x) =
(X) Z H?:]_(Ki + ai)vl- ([OC/Z])'

[v]=l|
e(v¥)=¢(a)

<o (3 x-S [3]) oo
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Then we use the relation in Propositi2r8to replacelﬁ!zﬂ by R,. The constant is simplified
by the fact that! = 21%(1/2)4(/2)!, f = [%E]. The case ot is odd is proved
similarly. [

The expansion oRZ or RI in terms of an explicit orthonormal basis can be derived from
the above proposition. We give the result R below. First we state an orthonormal basis
with respect tov,l'.

Definition 5.7. Forv € Nd andx € R?,

d
o (aj— o Oy
Py(x) := 1_[ a- |Xj—1|)” Pv(;l/ 1/2,k;-1/2) (_] . 1) ’
j=1 ' 1—Ixj-1f

where|x;| = x1 + - - - 4+ x; for 1< j <d andxg := 0.

The set{P, : |v| = n} is a basis for orthogonal polynomials of degrewith respect to
W and the elements in the set are mutually orthogonal; see, for exaifipte,47]. The
L? norm of P, is given by

w,ff |Py(x)PW] (x) dx
Td

d

.

_ (kj+aj)av;(aj +1/2)y,(kj +1/2)y,
Ikl + L2 3 '

(j +aj)y;vj!

Under the correspondence (2.9), the polynonials related toY», (x, k) in Proposition

5.1. In fact, forx = (x1, ..., xq, xg41) € S¢, the relation (2.5) gives
(ki +ap)
Yo,(x, K) = l—“’"P,xz,...,xz,
20(x. K) 11 Ty, WA SR
where we have used the fact th§t= 1—x2—. — xj{l if ||x|| = 1. Hence,

Corollary 5.8. Letp = |k| + (d — 1)/2.For . € N¢™, n = |a],

d

RI(.X):I’Z'(K"‘%) Z 1_[ (Ki+ai)"'i d)v (OC,K—%,I’l> Py(x).

1
o [v|=n i=1 (Ki + ai)2v,- (Ki + E)V,'

Proof. Using the factRy,(x) = RI (x2,...,x2, ), the formula comes fronRy;, in the
Propositions.6. Note that (v*) = ¢(2x) implies thaty; is even for every. [

Since polynomial¥, are mutually orthogonal, the expansion in Proposiédhcan be
used to compute the inner producti§fandR,,. Similarly, the Corollarys.8can be used to
compute the inner product & and P,.
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6. Further results

The definition ofR,, in Definition 2.1 makes sense fdr-harmonics associated with other
reflection groups. For background on the theorji-¢farmonics in general, s¢4,5,7]and
the references therein. Although a formula of the intertwining opergtois unknown
in general, it is known thaV,. is a bounded operator in the following sense ([5]). Let
[ plloc = SUpga+1|p(x)| for any polynomialp. For formal sumsf(x) = Y 724 fu(x)
with £, € P9 let | flla := Z’C’i? | fulloo @nd letA := {f : || flla < oo}. Then for
feAIVF@ILIfa forx € B4 This fact can be used to justify the definitionRf
in Definition 2.1 for other reflection groups.

We will not discussR,, associated with general reflection groups any further, but merely
point out that Propositio@.2 holds in the general setting and prove one more such result
which gives the expansion ¢fx* in terms ofR. Recall that Propositio@.2 shows

Ry(x) = Z (—0/2)y((—o+1)/2),

(_|OC| —p + l)l W’ ||x||2\”/|VKxoc—2y.
VAR

Y
The following proposition states that the above expansion can be reversed.
Proposition 6.1. Leta € Nd**. Then
—D)IF(—a/2)p((—a+1)/2
Viex® = Z (=D (=a/2)p((— ')/ ) B
Shey (=lotf = p+ L)gp B!

X (2=l — p + Dy — (1ol = p)ypy) IX 1P R, o5 (x).

Proof. We show that there exiayg such thatig = 1 and
Vix® = 3 aglx PP R, _pp(x),
2p <

the values ofi; will be uniquely determined as the stated value. Using the forRu(a) =
L Can X147 Viex® <7, it follows thal
Y, cayllxlPViex*=27, it follows that

D gl PRy pp) =Y ap Y cyop IxPAITENY, 022

2h<n 2p<a 2y<o-2p
—2y 2y
= Z Viex* =2 x| 271 Z aApCo—2p,y—p-
2y<a B<y

Since(a +m)y—m = (a),/(@)m, We have
) B (—lod — p+ g
AT (Coy2) g~k D/ (el — p+ Dy (0 — B!
so that we need to show that there exigsuch thatp = 1 and
a*
B

Z*r = = O,
' Z (=lol = p + Dyyiip (2 = O

B<y
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S (=lal = p + L)z B! ;
B (Co/2)p((—a+ 1725 "

fory # 0. For each¥,, ay has the dominating subindex among@lin 2. Consequently,

one can solve fou; recursively from the equations, = 0. The fact thatyy = ap = 1

shows then that the solution is unique. Hence, to complete the proof, we only have to show
thataj, = (—DP@(—|al — p + 1)ip — (—lal — p)p) is a solution. To do so, we need to
recall the definition of another Lauricella function, the function of typedefined by

o
Mxﬁ, a,ceR, ae NG max x| < 1.
(©)p B! tersdi

Fp(a,o5c;x) =)
B

Then, withaj; so chosen, using the fact thgt— f)! = (=D (=)p and @)y sm =
(a + n);,(a),, we obtain
3 (—DF(=lal = p+ Dyp = (=lol = p)ip)
(=led = p + Dy (0 — B)!B!
_ 1 (=P p@(=la| — p + Lypy — (ol — p)ip)
M=lal—p+ Dy £ (=lal = p+ 1+ 17Dy B!
_ 1
T PN=la = p 4 Dy

v:
By

[2Fp(—lal —p+ 1, =y —lal —p+ 1+l D)
— Fp(—lal = p, =y —lal —p+ 14+ |y D]
Using Lauricella’s identity2, p. 116]and the Chu—Vandermonde identity

(c —b),

Fp(a,o; c; 1) = 2Fi(a, |o); ¢; 1) and 2Fi(—n, b;c; 1) = ©
C)n

3

we can then conclude that, = 0. [J

For the case 02 in (1.1), the explicit formula of the intertwining operat gives that

(%)/} a+1
Vex” = —LEox f= s
(K + E)ﬁ
which gives the following corollary:

Corollary 6.2. Letax e Nd*2. For 2 in (1.1)andp = |k| + (d — 1)/2,

1
(e + ?)[%1] (—D)Pl(—a/2)p((—a+ 1)/
(%)[%1] By (=l = p + Ly B!

X (201 — ol = p+ D)yg — (—letl — p)iy) Ix PP R, _p(x).

x*=
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For orthogonal polynomials with respect W2 on B¢ and W! on 79, we can also
derive the explicit formula of the expansion.df in terms of monomial orthogonal basis.
For example, we have

Corollary 6.3. Leta € Ng. For wl'in (1.3)andp = |x| + (d — 1)/2,

o (K+ %)“ 3 D (—a)p(—a+1/2)
B (%)x f<u 2laf + p + 1)z !

x (22l + p + Dyp — Qlal + p)ip)) Rof_ﬁ(x).

Let us point out that the Propositidhl holds for other reflection groups, since it is a
formal inverse of the definition aR,. Note that for other reflection groupg,x* is not a
constant multiple ofc* in general and neither iR, an orthogonal projection of*. One
interesting aspect of Propositi@l lies in the fact thaiR, can be computed explicitly if
an orthonormal basis is known, since such a basis will give a formula for the reproducing
kernel of H¢+1(h2) so that Propositio&.2 can be used to produce a formulaRf. Once
the formula ofR, is known, the formula in Propositiof.1 gives an explicit formula of
Vix®, which is of interest since an explicit formula @f is not known for general reflection
groups. For example, in the case of dihedral grégdor which

hie(x) = |cosmB|*t| sin mf|"2, x = (cosb, sin 0),

an orthonormal basis 6#2(h2) is known[4]. Hence, the above outline can be carried out
to give an explicit formula oV,.x*. However, the formula is complicated and it does not
seem to give any indication of the explicit formulagf. We shall not present them.
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